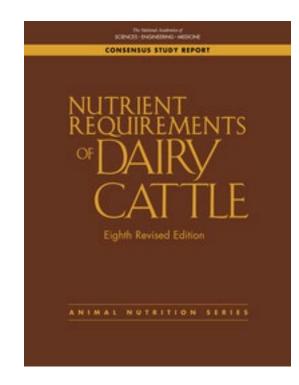
Current concepts in transition cow feeding and the NASEM requirements

James K. Drackley, Ph.D.

Professor of Animal Sciences University of Illinois Urbana-Champaign



Nutrient Requirements of Dairy Cattle (8th rev. ed.) National Academies of Sciences, Engineering and Medicine (NASEM), 2021

- Replaces "NRC", 2001
- 21 chapters, over 500 pages
- \$149.95 (nap.edu)
- New computer model (similar interface), expanded outputs (free download)
- New material as well as extensively revised material from NRC 2001

Chapter 12 Dry and Transition Cows

ANIMAL NUTRITION SERIES

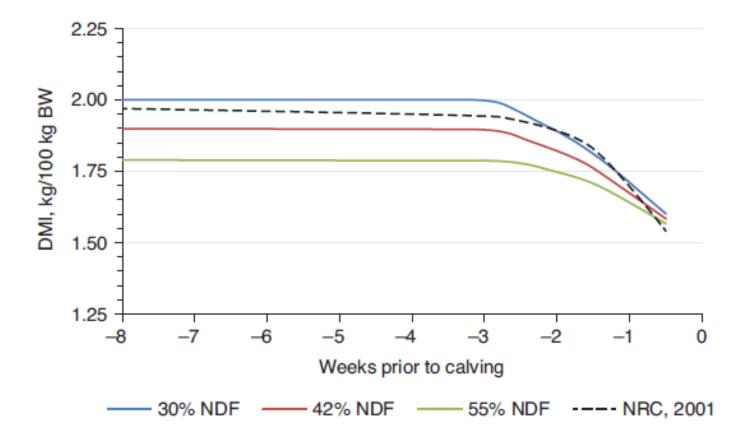
Changes from NRC 2001

- Updated literature review
- New DMI equations
- Gestation requirement model structure
- Energy requirements and dietary energy concentrations
- Mineral requirements
- Vitamin E requirements

Estimated DMI by NASEM 2021

- Equations include parity, diet NDF, and week prepartum
 - Week used because of uncertainty of calving date
- Insufficient data for true meta-analysis
- Insufficient data to evaluate interactions among parity, diet, and time prepartum
- Data from 2001 and all newer data available were used
- Almost all experiments used high forage diets; diets with byproduct NDF sources not represented

Estimating DMI using NASEM 2021


• Cows (% of BW):

= 1.47 – [(0.365 – 0.0028 × NDF) week] – 0.035 × week² where week = week from calving (i.e., it is negative) If cow > 3 wk from parturition, week = -3

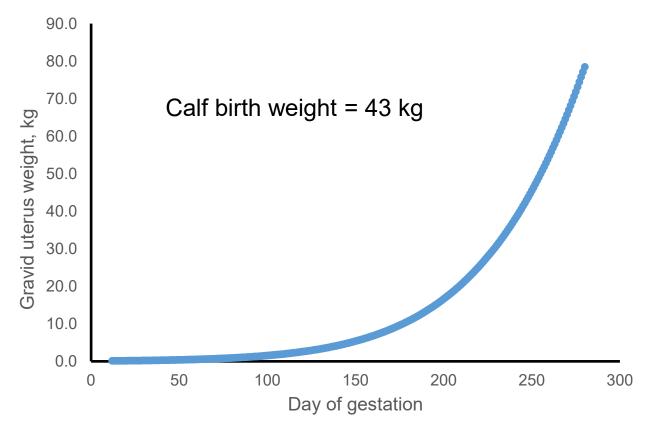
• Heifers: Cow equation × 0.88

Insufficient new data, therefore average parity effect from 2001 was retained

Estimated DMI by cows using NASEM 2021

New DMI equations

For far-off dry cows (>3 wk prepartum)


- DMI will be between 1.8 and 2% of BW
- Negatively correlated with dietary NDF

For close-up dry cows (<3 wk prepartum)

- DMI starts decreasing ~2.5 wk prepartum
- Rate of decline negatively correlated with dietary NDF
- At about wk 1 prepartum DMI about the same for all NDF (1.65% of BW)

Calculation of gestation requirements

- Mass model for conceptus starts at d 12 of gestation (compared with d 190 in NRC 2001)
- Function of maternal BW (heifer has smaller calf)
- Energy = 0.88 Mcal/kg
- CP = 125 g/kg

Gestation energy and protein requirements

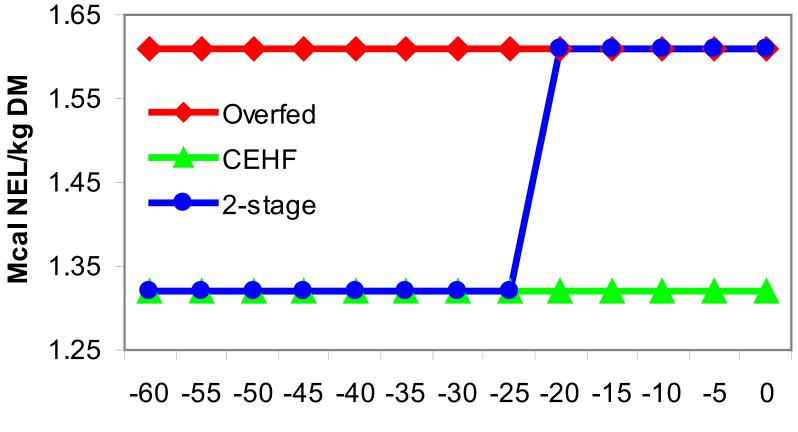
	Gestation NEL, Mcal/d		Gestation MP, g/d	
Day of gestation	NRC 2001	NASEM 2021	NRC 2001	NASEM 2021
50	0	0.04	0	3
100	0	0.1	0	13
150	0	0.5	0	43
200	2.7	1.4	199	125
220	3.0	2.0	245	185
250	3.4	3.5	306	320
275	3.8	5.4	357	489

Close-up starch, fiber, and energy

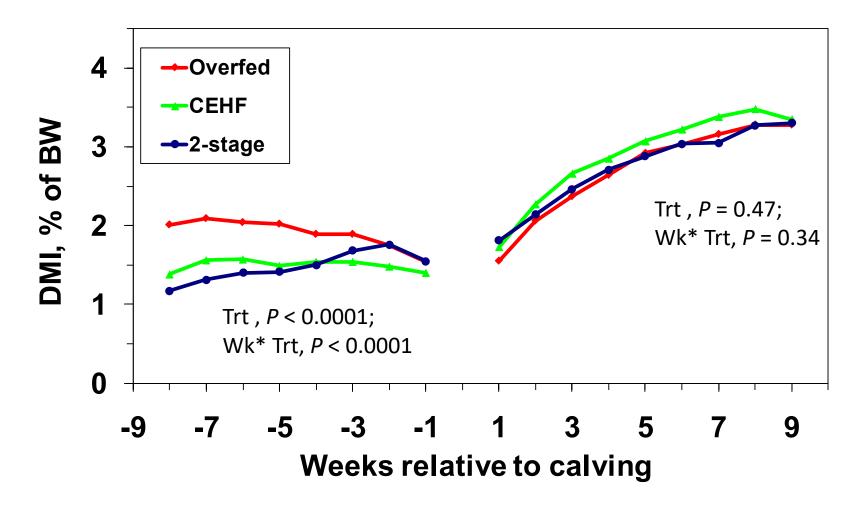
- Almost impossible to separate these effects (e.g., as NDF goes up starch and NEL usually go down)
- Increasing prefresh energy (more starch, less NDF):
 >Increases prepartum DMI
 - ➢Generally little effect on postpartum DMI
 - ≻Most studies show no effect on milk yield

Use of pre-fresh diet to adapt rumen

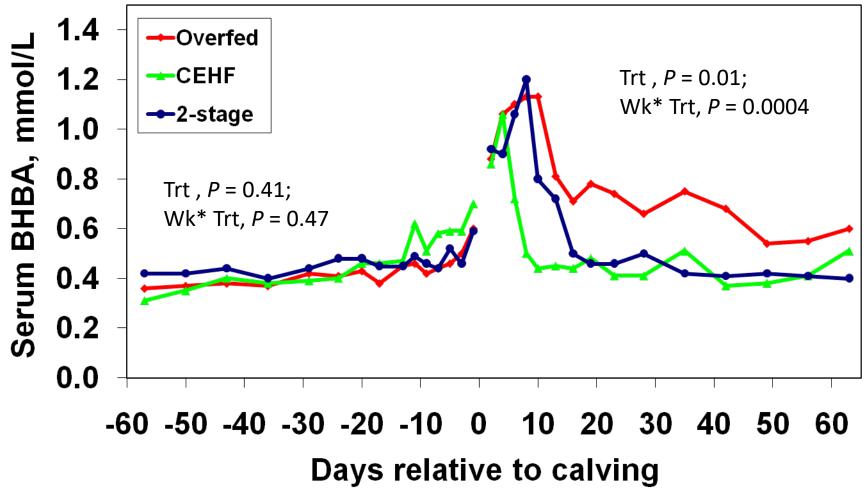
• To "help rumen deal with higher starch postpartum diet"


"Based on available data, benefits of feeding a diet of moderate starch and fiber to transition ruminal cells and rumen tissue morphology from a high-forage diet to a higher-starch lactation diet are not evident." One-diet dry cow management: use of controlled energy diets

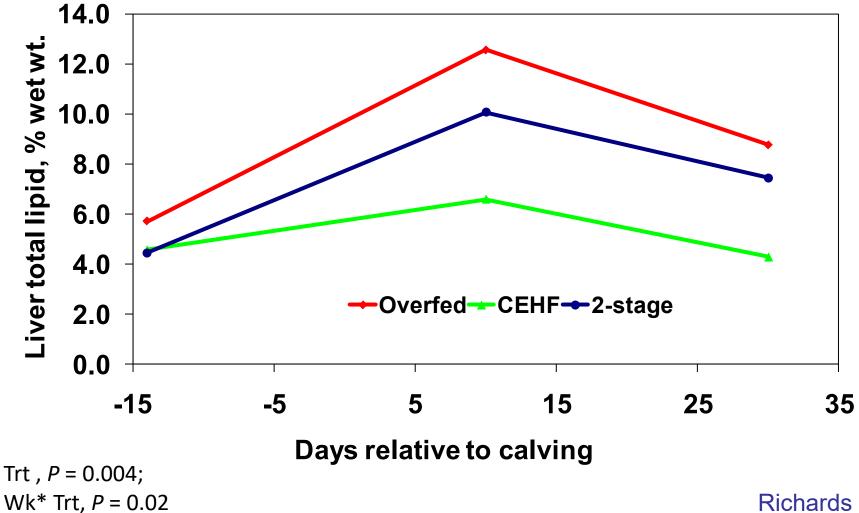
Diet composition (% of DM) – dry period


Ingredient	HE	LE
Wheat straw	0.0	40.5
Alfalfa hay, mid-maturity	6.0	3.2
Alfalfa silage, mid-maturity	17.9	9.7
Corn silage	49.9	28.3
Concentrate	26.2	18.3

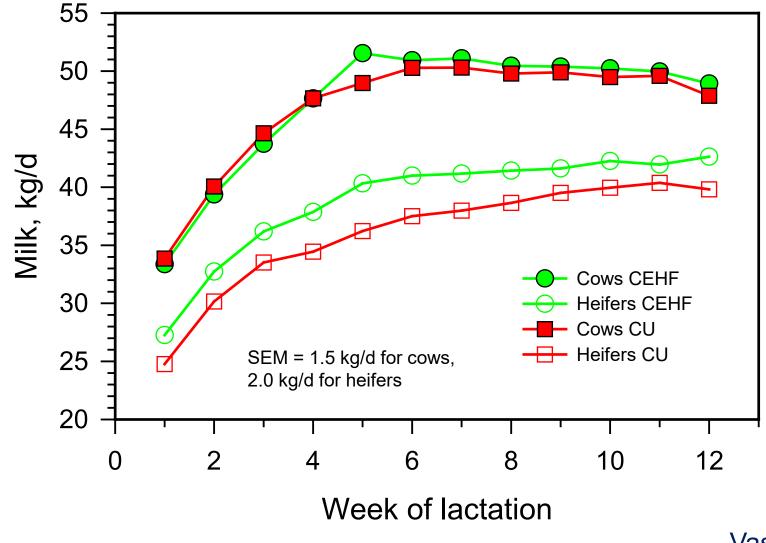
Dietary treatments



Day relative to calving


Dry matter intake for dry cows fed single-group or two-group diets

Controlled energy dry cow diets decreased serum BHBA

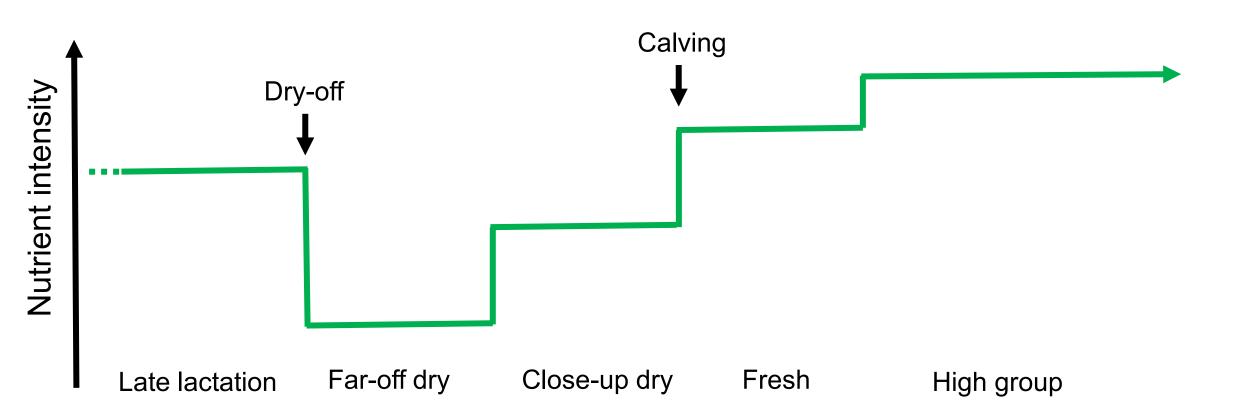

Controlled energy dry cow diets decreased liver total lipid

Dry period treatment did not affect milk yield but decreased milk fat percentage and yield

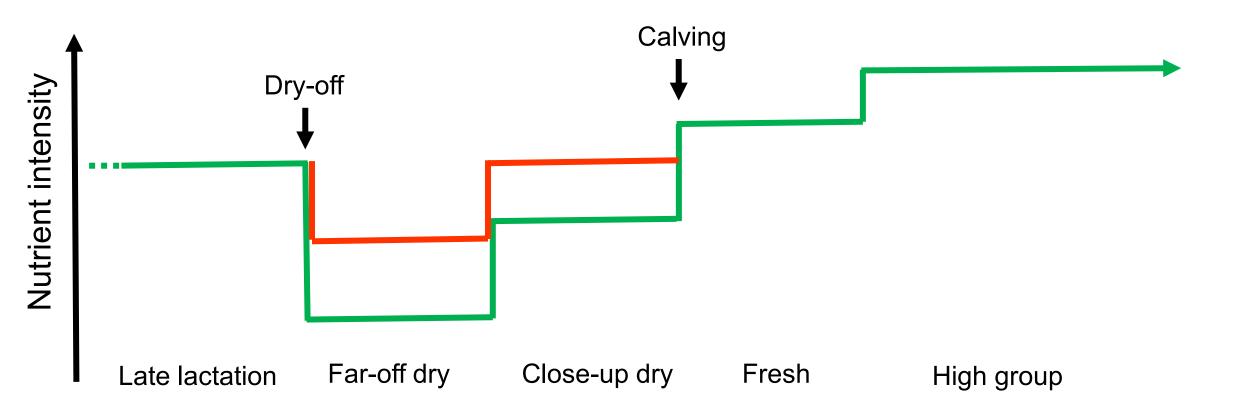
	Dry period treatment			
Variable	LE	HE	LE+HE	SE
Milk, kg/d	32.2	33.6	33.1	1.4
Milk fat, %	3.20 ^c	3.87ª	3.43 ^b	0.11
Milk fat, kg/d	1.12 ^c	1.41 ^a	1.21 ^b	0.06
Weeks 1 – 9 of lactation, first lactation cows included				
^{a,b,c} <i>P</i> < 0.05				

Milk yield was not different between strategies

Vasquez et al., 2021


Dry period treatment did not affect milk yield but decreased milk fat percentage

	Dry period	Dry period treatment		
Variable	CEHF	CU	SE	
Milk, kg/d	43.1	41.5	1.0	
Milk fat, %	3.54 ^b	3.76 ^a	0.07	
Milk fat, kg/d	1.48	1.52	0.03	
C18:1 <i>trans</i> -10, %	1.14 ^a	0.66 ^b	0.16	
Weeks 1-12 of lactation, first lactation cows included $a,b P < 0.05$				


May indicate lack of rumen adaptation at calving for one-diet strategy

Vasquez et al., 2021

"Nutrient intensity" changes during the transition

"Nutrient intensity" changes during the transition But don't want this...steps too small and far-off not low enough

NEL concentration of diets: dry cows

Ingredient	% of DM
Corn silage	40.0
Wheat straw	40.8
Corn gluten feed	8.05
Soybean meal	5.9
Canola meal	3.0
Urea	0.30
Minerals and vitamins	1.95

1790 lb, 240 DCC, 30.8 lb/d DMI

 NEL NRC 2001: 0.63 Mcal/lb (19.5 Mcal/d)

• NEL NASEM 2021:

0.71 Mcal/lb (21.8 Mcal/d)

Requirements also increase!

Comparison of energy requirements – dry cows

Ingredient	NRC, 2001	NASEM, 2021
NEL maintenance, Mcal/d	11.4	15.2
NEL pregnancy, Mcal/d	3.6	3.1
Total NEL required, Mcal/d	15.0	18.3

1790 lb, 240 DCC, 30.8 lb/d DMI

Comparison of nutrient balances – dry cows

Ingredient	NRC, 2001	NASEM, 2021
ME balance, Mcal/d	6.3	5.4
NEL balance, Mcal/d	4.5	3.6
MP balance, g/d	219	373

1790 lb, 240 DCC, 30.8 lb/d DMI

Both dietary energy prediction and energy requirements are higher with NASEM 2021.

Must use dietary NEL calculated by NASEM to be accurate!

NEL concentration of diets: close-up cows

Ingredient	% of DM
Corn silage	32.1
Wheat straw	36.3
Corn gluten feed	8.2
Soy hulls	6.6
Wheat midds	6.2
Soybean meal	5.8
Canola meal	2.6
Urea	0.25
Minerals and vitamins	1.95

1790 lb, 270 DCC, 28.6 lb/d DMI

- NEL NRC 2001: 0.65 Mcal/lb (18.6 Mcal/d)
- NEL NASEM 2021: 0.73 Mcal/lb
 - (20.9 Mcal/d)

Requirements also increase!

Comparison of energy requirements – close-up cows

Ingredient	NRC, 2001	NASEM, 2021
NEL maintenance, Mcal/d	11.4	15.2
NEL pregnancy, Mcal/d	3.6	5.2
Total NEL required, Mcal/d	15.0	20.4

1790 lb, 270 DCC, 28.6 lb/d DMI

Comparison of nutrient balances – close-up cows

Ingredient	NRC, 2001	NASEM, 2021
ME balance, Mcal/d	5.0	0.5
NEL balance, Mcal/d	3.6	0.3
MP balance, g/d	240	-113

1790 lb, 270 DCC, 28.6 lb/d DMI

Both dietary energy prediction and energy requirements are higher with NASEM 2021.

Must use dietary NEL calculated by NASEM to be accurate!

NEL concentration of diets: fresh cows

Ingredient	% of DM
Corn silage	30.0
Wheat straw	1.0
Alfalfa silage	15.0
Corn gluten feed	17.0
Corn grain	25.05
Soybean meal	3.0
Soybean meal, expellers	2.0
Blood meal	2.5
Tallow	2.0
Rumen protected Lys Met	0.2
Minerals and vitamins	2.25

1375 lb, 15 DIM, 46.2 lb/d DMI, 88 lb/d milk

- NEL NRC 2001: 0.76 Mcal/lb (35.1 Mcal/d)
- NEL NASEM 2021:

0.84 Mcal/lb (38.8 Mcal/d)

Requirements also increase!

Comparison of energy requirements – fresh cows

Ingredient	NRC, 2001	NASEM, 2021
NEL maintenance, Mcal/d	10.0	12.5
NEL milk, Mcal/d	29.0	29.0
Total NEL required, Mcal/d	39.0	41.5
NEL balance, Mcal/d	-3.9	-3.4

1375 lb, 15 DIM, 46.2 lb/d DMI, 88 lb/d milk

Both dietary energy prediction and energy requirements are higher with NASEM 2021.

Must use dietary NEL calculated by NASEM to be accurate!

Summary – diet energy concentrations (Mcal/lb DM)

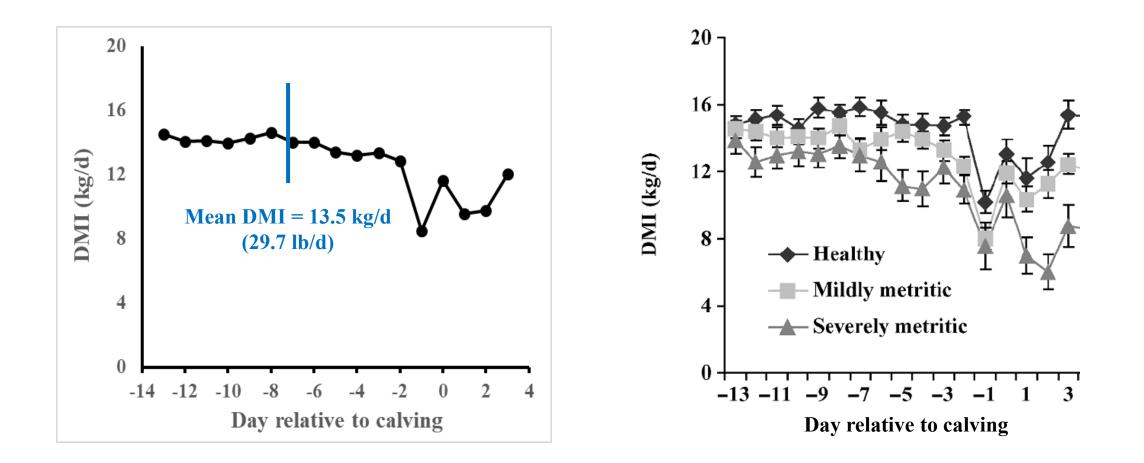
Cow class	NRC, 2001	NASEM, 2021
Far-off dry cows	0.63	0.71
Close-up dry cows	0.65	0.73
Fresh cows	0.76	0.84

Don't mix systems!

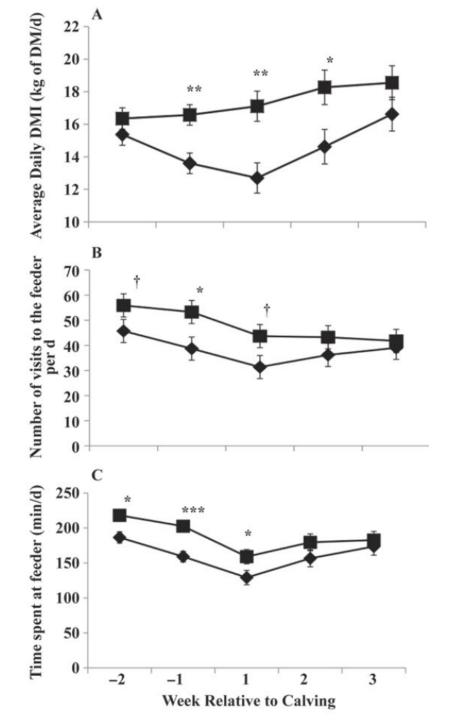
Overall changes in energy balance are small.

Cows can consume enough energy to meet requirements during transition period from a variety of diets

Dietary NE∟	DMI (lb) for	
(Mcal/lb)	19 Mcal	
0.70 (high straw)	27.1	
0.75	25.3	
0.80	23.8	
0.85 (high energy)	22.3	

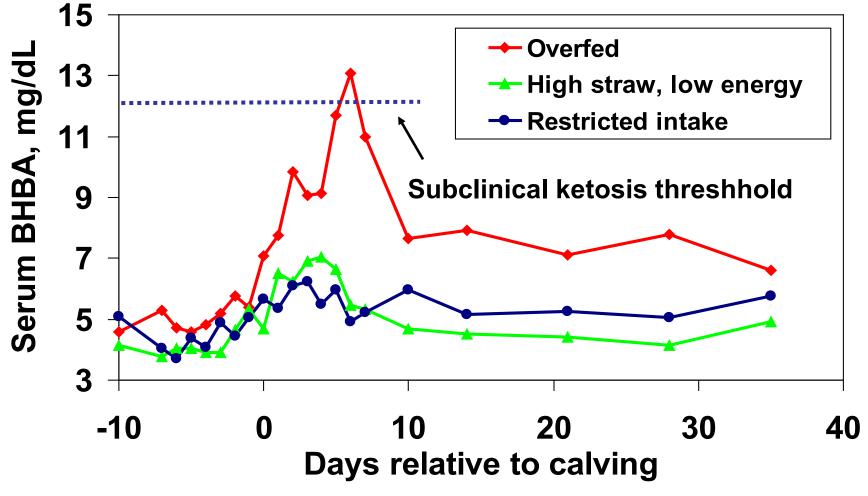

Dry cows will not stop eating once they have eaten enough energy – depends on rumen NDF fill!

Close-up cows will easily consume more energy than they require


NE∟, Mcal/ lb DM	Forage NDF, % of DM	Predicted DMI, lb/d	NE∟ intake, Mcal/d
0.70	55	25.5	18.5
0.75	50	26.4	19.8
0.80	45	27.3	21.8
0.85	40	28.2	24.0

Estimated for 1540 lb Holstein cow at 265 days carried calf using NASEM (2021)

Mean DMI vs sub-groups


Adapted from Huzzey et al., 2007

Pre-calving DMI, visits to feed bunk, and time spent at feed bunk were lower for cows that developed subclinical ketosis postpartum

Goldhawk et al., 2009

Restricting feed intake precalving in otherwisehealthy cows does *not* cause ketosis or metritis

Janovick et al., 2011

Does high DMI in pre-fresh cows prevent health problems?

- No.
- Indicates there are fewer cows destined for problems as a result of management barriers for cows to adapt to lactation.
- High DMI is an *indicator* of a successful program, it is not the reason for it.

Summary - Energy

- Energy requirements for NASEM 2021 are about 17-18 Mcal/d NEL for dry cows and about 19-20 Mcal/d NEL for transition cows (mature Holstein).
- Diets will be higher in calculated energy with NASEM 2021 than with NRC 2001.
- Balances will be lower with NASEM 2021 than with NRC 2001 – closer to what is observed in field.

Dry cow dietary protein and milk production

- For NRC (2001) most studies fed treatments during entire dry period, not just pre-fresh
- Milk and milk composition during first 3 wk to 17 wk were the primary outcome variables
- In a few studies, diets were as low as 10% CP without effect on milk production (cows)
 - Diet with 10% CP prepartum remained in protein balance at d -10 (Putnam and Varga, 1998)

Dry cow dietary CP and milk production

Meta-analysis (Lean et al., 2013)

12 studies, 26 treatment comparisons Control diets: 9.7 to 14.1% CP (avg. = 12.3) Treatment diets: 11.7 to 23.4% CP (avg. = 15.9%) Milk yield first 28 d to 120 d (avg = 65 DIM)

Average increase in milk for increased CP = 0.1 kg/d (-0.6 to +1.2 kg/d)

Dry cow dietary MP and milk production

Meta-analysis (Husnain and Santos, 2019)

- 27 comparisons for heifers
- 97 comparisons for cows

Mostly prefresh treatment comparisons

Diets: 9 to 21% CP (avg. = 14.0%)

6 to 10% MP (avg. 9.3% for cows; 6 to 13%)

MP calculated according to NRC 2001

Dry cow dietary CP and milk production

• No difference in milk yield for cows

Milk protein increased 60 g/1000 g MP intake in cows producing >36 kg/d milk

Increased milk and milk protein in first lactation cows

(Husnain and Santos, 2019)

Protein - NASEM 2001 model

Far-off dry cow and heifer

- ~11% CP (6.5% MP) will ~meet requirement
- 12% CP (7.2% MP) recommended because of limited data and potentially inadequate RDP
- Translates to 864 g/d (DMI 12 kg/d) to 1008 g/d (DMI 14 kg/d)

Protein - NASEM 2001 model

Close-up cow and heifer

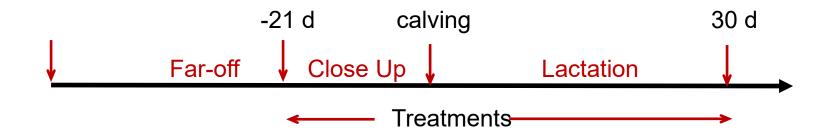
- ~13% CP (7.8% MP) will meet requirement
- Translates to 936 g/d (DMI 12 kg/d) to 1014 g/d (DMI 13 kg/d)
- Might not be optimum for heifers
- Model ignores MP for colostrum, mammary development, and immune function (no data to model)

Higher quality MP may improve health outcomes?

	Prepartum diet			
Disorder	Low CP	High CP - SBM	Hi CP - Prolak	
Retained placenta	4	6	1	
n = 20				

Underwood et al., 2022

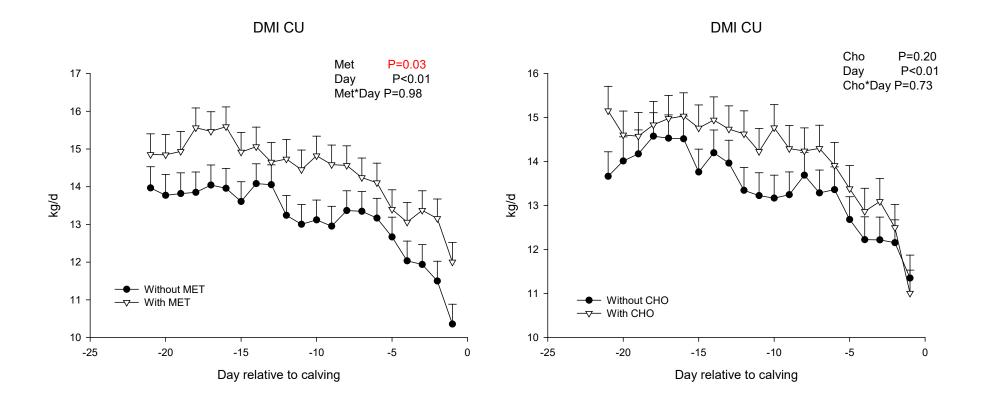
Amino acid supply – close-up cows


	Predicted	
	Supply Mcal	
Item	or g/d	
DE Non-Protein	28	
Arg	57	
His	27	
lle	66	
Leu	96	
Lys	86	
Met	25	
Phe	62	
Thr	60	
Trp	14	
Val	70	

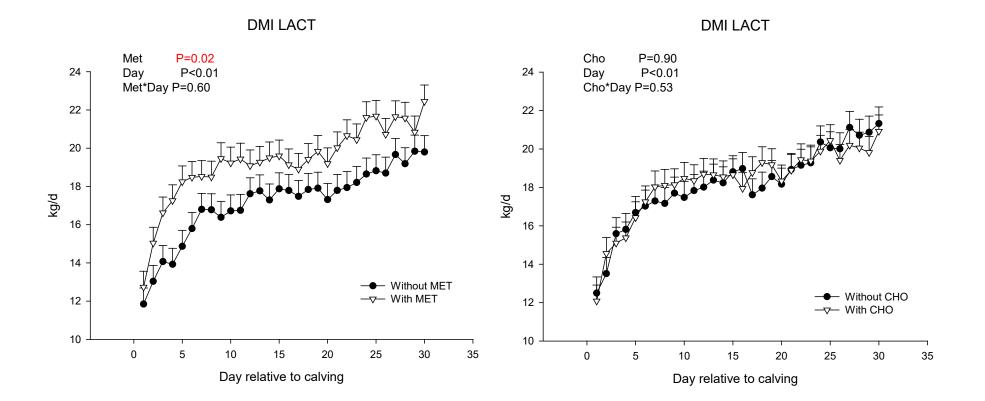
Lys:Met = 3.44

Targets (P. French): Lys = 90 g/d Met = 31 g/d Lys:Met = 2.9:1

> Would likely benefit from rumen-protected Met supplementation


Experimental design comparing the efficacy of rumen-protected methyl donors

CON: Control MET: Smartamine (Met; 0.08% of DM) CHO: ReaShure (Choline; 60 g/cow/d) MIX: Smartamine + ReaShure


2×2 Factorial arrangement		Methionine		
		no	yes	
Chalina	no	CON	MET	
Choline	yes	СНО	МІХ	

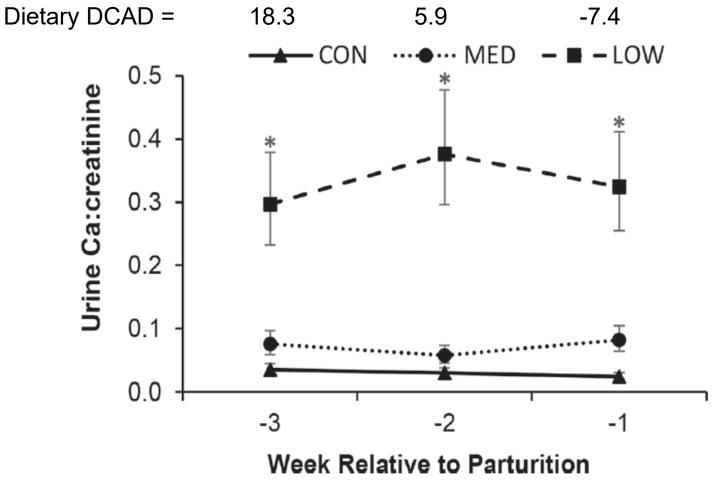
Main effects on DMI prepartum

Zhou et al., 2015

Main effects on DMI postpartum

Met but not choline increased milk yield and components

Variable	Met		Choline		Р	Р
	+	—	+	-	Met	Cho
Milk, kg	44.3	40.3	41.6	43.1	0.03	0.41
Fat, %	3.72	3.74	3.78	3.68	0.92	0.46
Protein, %	3.32	3.14	3.27	3.19	0.001	0.23
Fat, kg	1.67	1.53	1.59	1.61	0.04	0.79
Protein, kg	1.51	1.33	1.41	1.42	0.001	0.67
FCM, kg	44.8	40.7	42.3	43.2	0.001	0.54


Main effects shown; interactions of Met and Cho were not significant.

Zhou et al., 2016

Specific minerals/vitamins for transition cows

- Negative DCAD, Ca, P, Mg for hypocalcemia
- Higher vitamin E based on preventing mastitis, RP, and metritis
 - 1000 IU/d for dry cows and 2000 IU/d for prefresh cows (Holsteins)
- No other specific requirements

Metabolic acidosis caused by negative DCAD increases Ca excretion in urine

Leno et al., 2017

Effects of partial or full DCAD

	C	Diet (DCAD))	_	
Variable	CON	MED	LOW	SEM	Р
DCAD, mEq/100 g DM	18.3	5.9	-7.4		
DMI, kg/d					
wk -3 to -1	13.6	14.0	13.2	0.2	Q, 0.01
wk 1 to 3	20.2	20.9	21.3	0.5	L, 0.09
% of BW	2.88	2.98	3.07	0.06	L, 0.04
Milk, kg/d	40.8	42.4	43.9	1.0	L, 0.03

Q = quadratic effect, L = linear effect

Leno et al., 2017

Dietary concentrations (% of DM) required to meet the known requirements for macrominerals

Mineral	NRC, 2001	NASEM, 2021	Recommended ¹
Са	0.45	0.37	1.5 – 2.0
Р	0.23	0.21	0.25
Mg	0.12	0.13	0.40
K	0.52	0.65	low as possible
Na	0.10	0.16	0.16
CI	0.15	0.13	0.7 - 0.9
S	0.20	0.20	0.20 - 0.35

¹ J. K. Drackley recommendation for full anionic program

Dietary concentrations (mg/kg of DM) required to meet the known requirements for trace minerals

Mineral	NRC, 2001	NASEM, 2021	Recommended ¹
Со	0.11	0.20	0.24
Cu	13	19	22
I	0.4	0.54	0.65
Fe	13	14	17
Mn	18	41	50
Se	0.3	0.3	0.3
Zn	22	30	36

¹ J. K. Drackley recommendation, includes 1.2X safety factor

Dietary supply (IU/d) required to meet the known requirements for vitamins

Vitamin	NRC, 2001	NASEM, 2021	Recommended ¹
A	82,610	81,500	100,000
D	22,530	22,000	26,000
E	1202	2000	2000

No requirement established

- Cr
 - Essentiality recognized but insufficient data to establish an adequate intake
 - Analytical challenges
- Choline
 - Committee acknowledges response to supplementation during transition but declined to establish a requirement
 - Endogenous synthesis
 - Variable results during lactation

) [

THE R. drackley@illinois.edu